
Sci.Int.(Lahore),27(5),4485-4492,2015 ISSN 1013-5316; CODEN: SINTE 8 4485

Sept.-Oct.

REVIEW OF TCP CONGESTION CONTROL SLOW-START MODUELS
Mudassar Ahmad, Md Asri Bin Ngadi*

Department of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia,

UTM Johor Bahru, 81310, Johor, Malaysia.

[e-mail: mudassar.utm@gmail.com, dr.asri@utm.my.]

*Corresponding author: Md Asri Bin Ngadi

ABSTRACT—TCP provides reliable data transmission by using congestion control mechanisms. Congestion control mechanism

consists of slow-start, congestion avoidance, fast re-transmit and fast recovery modules. Slow-start and congestion avoidance

modules are used to control the data transmission, whereas fast re-transmit and fast recovery modules are used to re-transmit the

lost data. This paper reviews problems history and development of various slow-start modules present in the literature. It also

provides a detailed literature review of state-of-art congestion control mechanisms being used by different operating systems by

discussing their strength and weaknesses. Finally, literature summary is presented in the form to tables with detailed analysis as

a source of inspiration towards future development of new congestion control mechanisms.

Index Terms—TCP, Slow-Start Moduels, Congestion Control Mechanisms.

1.
INTRODUCTION
Congestion is a problem that occurs on shared networks when

multiple users contend for access to the same network

resources (bandwidth, buffers or queues). However,

congestion concerns controlling traffic entry into a network,

thus avoiding congestive collapse by attempting to avoid

over-subscription of any of the processing or link capabilities

of the intermediate nodes and networks and taking resource

reducing steps, such as reducing the rate of sending packets

[1]. Congestion occurs when there is too much traffic in the

network routers. If a router cannot transmit packets at a given

instance, it stores packets in a queue and waits for the next

chance to transmit. Queue has limited size, if queue data

exceeds limit, packet will be discarded [1]. If congestion

occurs in the network, then packet transfers are delayed and

discarded. Due to this reason, some protocols or applications

try to retransmit data. Users try to retransmit the data or

request the same data again and again. In this case ratio of

valid data is decreasing and at the end congestion collapse

occurs Therefore, it needs to control this congestion to

improve network quality of service [1]. Congestion control is

also difficult, because the Internet is designed to be

autonomous and it is a very huge network and still it is

expanding. There is no centralized management to control

each user behavior. Thus, it is difficult to determine how many

users or applications are sharing the network exactly. It is also

difficult to determine the source of the congestion exactly. It is

not possible to determine the exact capacity of the networks

and difficult to determine how much networks are congested

exactly. Finally, it is not possible to determine why packets are

lost. Many efforts have been done in the last twenty years to

solve this network problem [1]. However, due to these all

reason’s congestion control is still a critical issue for many

researchers.

Congestion control mechanism consists of slow-start and

congestion avoidance, fast retransmit and fast recovery

modules. Slow-start and congestion avoidance modules

control the transmission, whereas fast retransmit and fast

recovery moduels retransmit the lost data. The congestion

avoidance module acts as the main part of the congestion

control mechanism. Congestion avoidance module consists of

response function of the mechanism, which is responsible for

the reduction and growth of Congestion Window (cwnd) size,

which in turn controls the transmission. For convenience,

congestion avoidance module along with slow-start module is

normally called as a congestion control mechanism. TCP has

estimation, window control and data control components to

control the transmission. Data control components determines

which packet to transmit and window control determines how

many packets to transmit. These decisions are made based on

information provided by estimation component. This paper

reviews a comprehensive study of TCP congestion control

slow-start moduels present in TCP literature. In Section 2,

problems history and behavior of TCP congestion control

techniques being used during slow-start phase is discussed. In

Section 3, literature analysis of slow-start moduels is

discussed.

2. TCP SLOW START MODULES
Slow-start module increases the size of Congestion Window

(cwnd) exponentially whereas congestion avoidance module

increases linearly. A number of slow-start modules are

proposed in last few years. These slow-start modules sue

different techniques to increase the size of cwnd, such that

network congestion can be reduced. Slow-start modules are

briefly explained with equations and cwnd graphs in next sub

sections.

2.1 Hoe’s Approach

Hoe [2] proposes a method for the calculation of Slow Start

Threshold (ssthresh) at an early stage of the connection.

According to Hoe ssthresh is equal to the product of delay

which is also known as Round Trip Time (RTT) and the

estimated bandwidth as denoted in Eq. 1. The bandwidth

estimation is performed by using the least squares estimation

on three closely spaced Acknowledges (ACKs), similar to the

concept of packet pair. RTT is obtained by measuring the

round trip time of the first segment. Hoe’s approach avoids the

source from premature transfer of the connection from

slow-start phase to congestion avoidance phase. However,

later on Dovrolis et al. [3] indicate that this estimation is not

sufficient and need some sophisticated filtering to improve the

bandwidth estimation. The problem in Hoe’s approach is due

to the cross traffic, which may hinder in accurate estimation,

results in a frequent over estimation of the bottleneck link

bandwidth. Hoe’s approach fails when multiple losses occur

because multiple flows get the same estimation of the link,

results in overshooting the value of the cwnd from)(CN 

 value, where N is the number of competing flows and C is the

mailto:mudassar.utm@gmail.com
mailto:dr.asri@utm.my.

4486 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(5),4485-4492,2015

Sept.-Oct

capacity of the link, thus a buffer size of half of BDP (BDP / 2)

is required to prevent multiple losses for single connection.

Figs. 1 and 2 show the cwnd behavior of single flows and four

flows respectively.

 andwidthEstimatedBDelayssthresh = (1) (1)

Fig. 1: Hoe’s approach, congestion window growth with single

flow

Fig. 2: Hoe’s approach, congestion window growth with four

flows

2.2 Vegas Approach

Vegas slow-start module allows exponential growth of cwnd at

alternating round trip times. It calculates the expected

throughput, actual throughput and the difference between

them. The problem in the Vegas mechanism is the premature

termination of the slow-start phase [4]. Ha and Adviser-Rhee

[5] experimentally analyze this issue and show that TCP

Vegas prematurely terminates the slow-start phase as shown in

Fig. 3, while the BDP of the network is high. The reason is that

when the actual throughput falls below the expected

throughput, it changes from slow-start phase to linear increase

or decrease phase as denoted in Eq. 2.

2.3 Standard Slow-Start

The standard slow-start module of Jacobson [6] starts with a

cwnd size of one segment and for each ACK received, it

increases the cwnd size by one extra segment. This logic

causes the cwnd to doubles its size at each RTT for the TCP

session, causing an exponential increase of the number of

injected segments into the network per RTT. The exponential

growth of cwnd may cause large segment losses for certain

network scenarios as shown in Fig. 4

Fig. 3: Vegas approach, premature termination of slow-start

phase








ThroughputExpected

ThroughputActualif
DecreaseIncreaseLinear

BeginingtheAtStartSlow

Mode

<
/

=
(2)

.

Fig. 4: Typical behavior of Standard slow-start with single flow

1

1=

 cwndcwnd

cwnd

2.4 Limited Slow-Start

By limiting the growth of cwnd at each RTT, Limited

Slow-Start (LSS) can reduce the packet loss rate. Thus, it

improves the performance of TCP. LSS introduces a new

parameter named as maximum slow-start threshold

(msx_ssthresh). During slow-start phase, if

)_(ssthreshmaxcwnd  , cwnd is increased by one

Maximum Segment Size (MSS) for every ACK. During LSS

phase, if)<_(ssthreshcwndssthreshmax  , cwnd is

increased by)
1

(MSS
K
 per RTT and if

)<(cwndssthresh , the connection ends the slow-start

phase by entering into the congestion avoidance phase as

shown in Eq. 3. Where K is equal to



















 ssthreshmax

cwnd

_
2

1

. Fig.

5 shows the behavior of LSS during slow-start phase.

Sci.Int.(Lahore),27(5),4485-4492,2015 ISSN 1013-5316; CODEN: SINTE 8 4487

Sept.-Oct.

Fig. 5: Typical behavior of Limited Slow-Start













cwndssthreshifPhaseAvoidanceCongestion

ssthreshcwndssthreshmaxifMSS
K

cwndcwnd

ssthreshmaxcwndifMSScwndcwnd

<

<_
1

_
 (3)

 (3)

2.5 Adaptive Limited Slow-Start

Nakauchi and Kobayashi, [7] proposes Adaptive Limited

Slow-Start (ALSS), where the source node configures

ssthresh and max-ssthresh using Simple Internet Resource

Notification Scheme (SIRENS). The behavior of SIRENS is

illustrated in Fig. 6. By using SIRENS, the source node

updates its information about current AvailableBandwidth and

QueueSize at each hop. After this updating, the source node

configures the ssthresh and max-ssthresh parameters using

minimum available queue size and bandwidth respectively on

the communication link as denoted in Eq. 4, where 0.5=1C

and 0.75=2C are ALSS constants. By this implementation,

the source node can shift from slow-start phase to congestion

avoidance phase without dropping any packets and can

achieve maximum available link bandwidth in an efficient way

as shown in Fig. 7.

Fig. 6: SIRENS behavior [7]

Fig. 7: Slow-start and congestion avoidance phases in ALSS

MSS

RTT
BandwidthAvailable

cwndmax

cwndmaxCssthresh

SizeQueueCssthreshmax

2=)(

)(=

=_

2

1





 (4)

2.6 Adaptive Start

Wang et al. [4] proposes an Adaptive Start (Astart) to improve

the start-up performance in large bandwidth networks. At the

beginning of the connection, Astart adaptively and repeatedly

resets the ssthresh based on an Eligible Rate Estimation (ERE)

[8] estimation mechanism being used by TCP Westwood [9].

Thus, it repeats the exponential and linear growth of the cwnd

until a packet loss occurs. A start is slower than Standard

slow-start, Eq. 5 shows the value of ssthresh and cwnd at each

ACK. Fig.s 8 and 9 show the behavior of Astart with a single

flow and with four flows respectively. In Fig. 9, each flow

calculates the similar ERE value and after some time all flows

overshot the link capacity.

Fig. 8: Typical behavior of Adaptive Start with single flow

Fig. 9: Typical behavior of Adaptive Start with four flows





















IncreaselExponentiassthreshcwndifcwndcwnd

IncreaseLinearssthreshcwndif
cwnd

cwndcwnd

Astart
sizeseg

RTTERE
ssthreshif

sizeseg

RTTERE
ssthresh minmin

<1

1

_
<

_
= (5)

2.7 Paced Start

Hu and Steenkiste [10] proposes Paced Start which

incorporates a bandwidth estimation mechanism into the

Standard TCP start-up algorithm. Paced Start probes the

available link bandwidth by measuring the gap between the

data packets spacing and the ACK spacing. Standard

slow-start ignores this information, while Paces Start uses it to

estimate the cwnd for the network path. The main idea behind

the Packed Start is to apply the available estimation algorithm

to the packet sequence used by the Standard slow-start.

4488 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(5),4485-4492,2015

Sept.-Oct

Sometimes this gap measurement is very difficult for Long

Distance High Bandwidth (LDHB) networks.

2.8 Quick Start

Quick Start [11-14] is an experimental enhancement of the

TCP slow-start module which uses explicit router feedback to

determine the sending rate quickly. Quick Start requires

modifications both in TCP algorithms and in routers. Scharf

and Strotbek [14] first, show that Quick-Start can be added in

real stack without causing any processing overhead. Secondly,

Scharf and Strotbek [14] performed the experiments on

webbased applications to measure the performance of

Quick-Start. Finally, results show that Quick-Start can

significantly speed up the data transmission. Thus, Quick Start

may be useful for future Internet applications.

2.9 Cap Start

Cap Start [15] merge Standard slow-start (Reno slow-start)

and Limited slow-start mechanisms to develop a new path

estimation mechanism, which is a real-time estimation of

current TCP path. Cap-Start is an adaptive slow-start module

to achieve faster TCP communication in Long Distance High

Bandwidth (LDHB) networks. After the estimation, it starts

the communication with respect to available link bandwidth.

As source interface capacity and network path capacity are

two important entities in TCP communication. Cavendish et

al. [15] evaluate the slow-start impact on different applications

running on LDHB networks. Cavendish et al. [15] conclude

that for LDHB networks, faster network interface cards may

not achieve better network performance with Standard slow

start (Reno slow-start) protocol. If ifC represents TCP source

interface capacity, iC represents router i outgoing interface

capacity, bnC represents bottleneck capacity, capacity

expansion path scenario satisfies),<(iiif CC  and

capacity reduction path scenario satisfies),(iiif CC  ,

then size of cwnd is given as in Eq. 6.





















MaxQ
MSS

CRTT

Drain
MSS

CRTT

Fill
MSS

CRTT

cwnd

bn

bn

if

2

=

(6)

2.10 Hybrid Start (HyStart)

TCP CUBIC [16] uses HyStart [17] as its default slow-start

module. HyStart uses a Safe exit point to switch the connection

from slow-start phase to congestion avoidance phase. As the

capacity of a network can be defined by the sum of unused link

bandwidth on the forward path and the size of buffer at

bottleneck router, the safe exit point must be less than C,

whose value is given in Eq. 7, where B is the unused link

bandwidth, minD represents the minimum forward path one

way delay and S represents the available buffer size. Packet

loss will occur if the size of cwnd is greater than C. The cwnd

curve behavior of HyStart during slow-start phase is shown in

Fig. 10. Figure illustrates the exponential growth of cwnd in

slow-start phase.

Fig. 10: Congestion window curve of HyStart

)(= SDBC min  (7)

occurwilllossPacketCcwndif),>(

There are two types of bandwidth estimation techniques:

packet-pair and packet-train. For bandwidth estimation,

HyStart uses a concept similar to packet-train. Suppose a

source transmits N back-to-back packets of size L to the

destination. For (N > 2), these back-to-back packets are called

a packet-train. The length of this packet-train is denoted by

)(N , which is equal to
k

Nk

k


1=

1=
 as described in Eq. 8.

Where N is the number of packets in train, k is the inter

interval time between packets k and 1k as shown in Fig.

11. By using the packet-train length, a destination can measure

the bandwidth)(Nb of the link as expressed in Eq. 9 and 10.

Fig. 11: Packet train concept

k

Nk

k

N 



1=

1=

=)((8)

)(

1)(
=)(

N

LN
Nb



 (9)

k

Nk

k

LN
Nb





1=

1=

1)(
=)(

 (10)

By using packet-train concept and an approach of [17], unused

link bandwidth on the link can be calculated. Based on this

approach, if B represents the unused link bandwidth for the

forward path and minD represents the minimum forward

one way delay (RTT / 2), then the Bandwidth Delay Product

(BDP) of the link path can be denoted as)(minDB , which

is described in Eq. 11.

minDNbminDBBDP )(== (11)

Sci.Int.(Lahore),27(5),4485-4492,2015 ISSN 1013-5316; CODEN: SINTE 8 4489

Sept.-Oct.

Solving Eq. 9 and 11,)(minDB is updated and is shown

in Eq. 12.

minD
N

LN
minDBBDP 






)(

1)(
==

 (12)

Based on [17], if)(N is equal to Dmin , then

)(DminB will equal to LN 1)(as described in Eq.

13.

LNminDBBDP  1)(== (13)

 Since
)(

1)(
=)(

N

LN
Nb



 , then LN 1)(represents the

size of cwnd , means when)(N is equal to minD , the

cwnd becomes equal to)(minDB as described in Eq.

14.

cwndminDBBDP ==  (14)

By dividing minD on both sides, bandwidth B can be

calculated as described in Eq. 15.

cwnd

minD
B = (15)

By using train of acknowledgements,)(N is estimated,

which is equal to the sum of inter arrival times of packets in

train as shown in Fig. 11.)(N represents the time period

between the receipt of first and last ACK in an

acknowledgement train. minD is calculated by dividing the

minimum observed RTT by 2 as defined in Eq. 16

2
=

minRTT
minD (16)

2.11 Early Slow-Start Exit

Giordano et al. (2005) [18] proposes Early Slow-Start Exit

(ESSE) to improve the TCP startup performance by setting the

ssthresh according to a pipe size estimation mechanism based

on the observation of few acknowledgement’s arrival times.

ESSE module is easy to implement and preserves the

compatibility with the Standard TCP, since it requires changes

to the source side only. ESSE allows to speed-up TCP

connections and reduces the packet loss rate. Better

performance of TCP can be observed for any of the considered

estimators, which indicates that the algorithm is robust against

estimation errors. ESSE modified protocols guarantee fair

utilization of bandwidth among homogeneous and

heterogeneous (Newreno) connections sharing a common link.

This technique is quite successful in reducing the packet loss

rate at the bottleneck and in decreasing the completion time

(indeed, the most interesting parameters for end-users) of short

lived connections. An estimated value of ssthresh should be

close to BDP and can be further expressed as the ratio between

the delay and the spacing of packets at bottleneck. The optimal

delay is between the round trip delay and the maximum

expected delay. The upper and lower bounds of the interval

can be estimated at real time by taking the minimum and

maximum round trip times observed by the initial few packets.

The optimal packet spacing is related to the inter arrival time

of acknowledgements of two packets sent in close succession.

If kRTT represents the
thk packet RTT, kt represents the

inter arrival time between
thk 1 and

thk packet, then Table

1 represents the maximum cases of bandwidth estimators. The

pipe-size is estimated first by using one of the estimation from

Table 1 over a predefined number of acknowledgements, then
Table 1: Bandwidth estimations in ESSE

Name Estimator

MinMin

k

k

tmin

minRTT



MaxMin

k

k

tmin

maxRTT



MinMed

kk

k

minRTTmaxRTT

minRTT



MaxMed

kk

k

minRTTmaxRTT

maxRTT



the ssthresh is selected accordingly.

SpacingPacket

Delay
SizePacket

BandwidthDelay
SizePipe







=

=

2.12 Gallop-Vegas

Ho et al. (2006) [19] proposes Gallop-Vegas to enhance the

throughput of TCP Vegas [20]. It does not increase cwnd in

first RTT, however, after second RTT, it increases the cwnd

with a stable growth rate between exponential and linear

growth as shown in Fig. 12.

Fig. 12: Stable growth rate of congestion window in Gallop Vegas

3. LITERATURE ANALYSIS AND SUMMARY OF
SLOW-START MODULES
This literature reviewed a comparative study of slow-start

modules of TCP congestion control mechanism. It is found

that, slow-start modules uses two variables: Congestion

Window (cwnd) and Slow-Start Threshold (ssthresh) to

control the transmission during show start phase. However, the

values of these two variables are depending on the available

link bandwidth. Thus, for link bandwidth estimations,

different techniques are used by different slow-start modules.

The aim of all slow-start modules is to switch the connection

from slow-start phase to congestion avoidance phase without

dropping much packets. For this purpose some of slow-start

modules are also use a conditional variable.

4490 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(5),4485-4492,2015

Sept.-Oct

Hoe proposes a method for the calculation of ssthresh at an

early stage of the connection. Based on Hoe’s approach,

ssthresh is equal to the product of delay RTT and the estimated

bandwidth. Hoe’s approach fails when multiple losses occur

because multiple flows get the same estimation of the link,

results in overshooting of the value of the cwnd. However,

later on Dovrolis et al. [3] indicate that this estimation is not

sufficient and need some sophisticated filtering to improve it.

Hu and Steenkiste (2003) [10] proposes Paced Start which

incorporates a bandwidth estimation mechanism into the

Standard TCP start-up algorithm. Paced Start probes the

available bandwidth by measuring the gap between the data

packets spacing and the ACK spacing. Standard slow-start

ignores this information, while Paces Start uses it to estimate

the cwnd for the network path. The main idea behind the

Packed Start is to apply the available estimation algorithm to

the packet sequence used by the standard slow-start.

Sometimes this gap measurement is very difficult for high

bandwidth, long distance networks.

Vegas slow-start mechanism allows exponential growth of

cwnd at alternating round trip times. It calculates the expected

throughput and actual throughput and the difference between

these throughputs. The problem in the Vegas mechanism is the

premature termination of the slow-start phase [4]. Ha and

Adviser-Rhee [5] experimentally analyze this issue and show

that TCP Vegas prematurely terminates the slow-start phase,

while the Bandwidth Delay Product (BDP) of the network is

high. Wang et al. [4] proposes an Adaptive Start (Astart) to

improve the start-up performance in large bandwidth delay

networks. At the beginning of the connection, Astart

adaptively and repeatedly resets the ssthresh based on an

Eligible Rate Estimation (ERE) [8] estimation mechanism

being used by TCP Westwood. Thus it repeats the exponential

and linear growth of the cwnd until a packet loss occurs.

By limiting the growth of cwnd at each RTT, Limited

Slow-Start (LSS) can decrease the packet loss rate by

improving the performance of TCP. LSS introduces a new

parameter named as maximum slow-start threshold

)_(ssthreshmax . During slow-start phase, if

)_(ssthreshmaxcwnd  , cwnd is increased by one

Maximum Segment Size (MSS) for every ACK. During LSS

phase, if)<_(ssthreshcwndssthreshmax  , cwnd is

increased by
)

1
(MSS
K


 per RTT and if)<(cwndssthresh ,

the connection ends the slow-start phase by entering into the

congestion avoidance phase. Giordano et al. [18] proposes

Early Slow-Start Exit (ESSE) to improve the TCP start up

performance by setting the ssthresh according to a pipe size

estimation mechanism based on the observation of few

acknowledgement’s arrival times. ESSE allows to speed-up

TCP connections and reduces the packet loss rate under

several working conditions and load levels. Better

performance of TCP can be observed for any of the considered

estimators, which indicates that the algorithm is robust against

estimation errors. ESSE modified protocols guarantee fair

utilization of available link bandwidth among homogeneous

and heterogeneous (Newreno) connections sharing a common

link. This technique is quite successful in reducing the packet

loss rate at the bottleneck and in decreasing the completion

time (indeed, the most interesting parameters for end-users) of

short lived connections.

An estimated value of ssthresh should be close to bandwidth

delay product and can be further expressed as the ratio

between the delay and the spacing of packets at bottleneck.

The optimal delay is between the round trip delay and the

maximum expected delay. The upper and lower bounds of the

interval can be estimated at real time by taking the minimum

and maximum round trip times observed by the initial few

packets. The optimal packet spacing is related to the inter

arrival time of acknowledgements of two packets sent in close

succession. If)(kRTT represents the
thk packet RTT,

)(kt represents the inter arrival time between
thk 1 and

thk packet, then Table 1 represents the maximum cases of

bandwidth estimators. The pipe-size is estimated first then the

ssthresh is selected accordingly.

Ho et al [19] proposes Gallop-Vegas to enhance the

throughput of TCP Vegas. It does not increase cwnd in first

RTT, after second RTT, it increases the cwnd with a stable

growth rate between exponential and linear growth. [7]

proposes Adaptive Limited Slow-Start (ALSS), where the

source node configures ssthresh and max-ssthresh using

SIRENS. By using Simple Internet Resource Notification

Scheme (SIRENS), the source node updates its information

about current AvailableBandwidth and QueueSize at each hop.

After this updating, the source node configures the ssthresh

and max-ssthresh parameters using minimum available queue

size and bandwidth respectively on the communication link.

By this implementation, the source node can shift from

slow-start phase to congestion avoidance phase without

dropping any packets and can achieve maximum available link

bandwidth.

Quick Start is an experimental enhancement of the TCP

slow-start mechanism which uses explicit router feedback to

determine the sending rate quickly. Quick Start requires

modifications both in TCP algorithms and in routers. Scharf

and Strotbek [14] first, show that Quick-Start can be added in

real stack without causing any processing overhead. Secondly,

Scharf and Strotbek [14] performed the experiments on web

based applications to measure the performance of Quick-Start.

Finally, results show that Quick-Start can significantly speed

up the data transmission. Thus Quick Start can be useful for

future Internet applications.

Cap Start [15] merge Standared TCP slow-start (Reno

slow-start) and Limited slow-start mechanisms to develop a

new path estimation mechanism, which is a real-time

estimation of current TCP path. Cap-Start is an adaptive

slow-start mechanism to achieve faster TCP communication in

high bandwidth long distance networks. After the estimation,

it starts the communication with respect to available link

bandwidth. As source interface capacity and network path

capacity are two important entities in TCP communication,

Cavendish et al. [15] evaluate the slow-start impact on

different applications running on Long Distance High

Bandwidth (LDHB) networks. Cavendish et al. [15] conclude

that for LDHB networks, faster network interface cards may

not achieve better network performance with Standard

Sci.Int.(Lahore),27(5),4485-4492,2015 ISSN 1013-5316; CODEN: SINTE 8 4491

Sept.-Oct.

slow-start (Reno slow-start) protocol. HyStart [17] uses a safe

exit point for the termination of slow-start phase. As the

capacity of a network can be defined by the sum of unused

available link bandwidth on the forward path and the size of

buffer at bottleneck router, the Safe exit point must be less than

a run time defined variable’s value. Different techniques being

used by slow-start modules are summarized in Table 2.
Table 2: Literature analysis of slow-start modules

Slow-start modules Techniques

Hoe’s Approach It uses a technique similar to Packet

Pair for the estimation of the unused

link bandwidth.

Vegas Approach It uses actual throughput, expected

throughput and their difference to

make a decision to terminate the

slow-start phase.

Standard Slow-Start It uses a technique of exponential

growth of congestion window (cwnd)

during slow-start phase.

Limited Slow-Start It uses maximum slow-start threshold

(max_ssthresh) for the growth of

congestion window (cwnd).

Adaptive-Limited

Slow-Start

It uses Simple Internet Resource

Notification Scheme (SIRENS) to

estimated the unused link bandwidth

and queue size.

Adaptive Start It uses Eligible Rate Estimation

(ERE) of TCP Westwood to estimate

the unused link bandwidth.

Paced Start It uses packet spacing and ACK

spacing techniques to estimated the

unused available bandwidth.

Quick Start It uses the Explicit Router Feedback

(ERF) technique to determine the

sending rate.

Cap Start It uses both techniques of Standard

Slow-Start and Limited Slow-Start to

develop a new path estimation

mechanism.

Hybrid Start It uses a conditional variable to switch

the connection from slow-start phase

to congestion avoidance phase.

Early Slow-Start Exit It uses packet spacing based on ACK

arrival time to estimate the unused

link bandwidth.

Gallop Vegas It used linear, stable and exponential

growth of congestion window (cwnd).

4. FINDINGS OF LITERATURE REVIEW
At the beginning of transmission, slow-start module increases

the size of cwnd rapidly because the size of unused link

bandwidth is unknown. Slow-start modules increase cwnd

exponentially, linearly and in stable way. During exponential

growth, size of cwnd increases one packet in each

acknowledgment (ACK) which doubles the size of cwnd at the

end of each Round Trip Time (RTT). In linear growth, size of

cwnd increases linearly, which increases one packet in each

RTT instead of at each ACK. In stable growth, size of cwnd

increases between exponential and linear way. However,

exponential growth of cwnd increases the size of cwnd very

fast as compared to linear or stable growth. Thus, exponential

growth of cwnd causes much packet losses during slow-start

phase and many state-of-the-art operating systems suffer this

problem. Once the size of cwnd increase to an appropriate

value, connections leaves the slow-start phase and enters into

the congestion avoidance phase. Slow-start modules use

different techniques to switch the connection from slow-start

phase to congestion avoidance phase. Some slow-start

modules use ssthresh variable and some modules use a

condition, such as safe exit point, early exit point or cut-off

point to switch the connection from slow-start phase to

congestion avoidance phase without losing much packets in

slow-start phase. If the size of cwnd is equal to or greater than

ssthresh, connection switches automatically from slow-start

phase to congestion avoidance phase. Different congestion

control modules use different techniques to calculate the

ssthresh and cut-off or safe exit points. Few slow-start modules

also calculate the expected and actual throughput and the

difference between these two throughputs to control the

growth of cwnd. In short, the purpose of slow-start module is

to start the transmission and to increase the size of cwnd to an

appropriate size, so that, maximum available link bandwidth

can be achieved for transmission by minimizing the packet

loss rate during slow-start phase.

5. SUMMARY
In this paper, an extensive literature review is presented that

mainly includes slow-start. However, research is being done to

utilize the maximum available link bandwidth and to avoid

from the congestion. Practically all Internet applications rely

on the TCP and to deliver data reliably across the network. The

most important element of TCP is congestion control that

defines its performance characteristics. Literature highlighted

the fact that research focus has changed with the development

of the Internet, from the basic problem of eliminating the

congestion collapse phenomenon to problem of using

available network resources efficiently in different type of

network environments.

REFERENCES

[1] Lar, S.-u. and Liao, X. (2013). An initiative for a

classified bibliography on TCP/IP congestion control.

Journal of Network and Computer Applications. 36(1),

126-133.

[2] Hoe, J. (1996). Improving the start-up behavior of a

congestion control scheme for TCP. In ACM SIGCOMM

Computer Communication Review, vol. 26. ACM,

270-280.

[3] Dovrolis, C., Ramanathan, P. and Moore, D. (2004).

Packet-dispersion techniques and a capacity-estimation

methodology. Networking, IEEE/ACM Transactions on.

12(6), 963-977.

[4] Wang, R., Pau, G., Yamada, K., Sanadidi, M. and Gerla,

M. (2004). TCP startup performance in large bandwidth

networks. In INFOCOM 2004. Twenty-third AnnualJoint

Conference of the IEEE Computer and Communications

Societies, vol. 2. IEEE, 796-805.

[5] Ha, S. and Adviser-Rhee, I. (2009). Improving tcp

congestion control for high bandwidth and long distance

networks. North Carolina State University.

[6] Jacobson, V. (1988). Congestion avoidance and control.

In ACMSIGCOMMComputer Communication Review,

vol. 18. ACM, 314-329.

4492 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),27(5),4485-4492,2015

Sept.-Oct

[7] Nakauchi, K. and Kobayashi, K. (2007). An explicit

router feedback framework for high bandwidth-delay

product networks. Computer Networks. 51(7),

1833-1846.

[8] Wang, R., Valla,M., Sanadidi,M. and Gerla,M. (2002).

Using adaptive rate estimation to provide enhanced and

robust transport over heterogeneous networks. In

Network 61 Protocols, 2002. Proceedings. 10th IEEE

International Conference on. IEEE, 206- 215.

[9] Mascolo, S., Casetti, C., Gerla,M., Sanadidi,M. andWang,

R. (2001). TCP westwood: Bandwidth estimation for

enhanced transport over wireless links. In Proceedings of

the 7th annual international conference on Mobile

computing and networking. 60 ACM, 287-297.

[10] Hu, N. and Steenkiste, P. (2003). Improving TCP startup

performance using active measurements: algorithm and

evaluation. In Network Protocols, 2003. Proceedings.

11th IEEE International Conference on. IEEE, 107-118.

[11] Floyd, S. and Fall, K. (1999). Promoting the use of

end-to-end congestion control in the Internet. IEEE/ACM

Transactions on Networking (TON). 7(4), 458-472.

[12] Floyd, S., Allman, M., Jain, A. and Sarolahti, P. (2007).

Quick-Start for TCP and IP. IETF RFC4782.

[13] Scharf,M., Hauger, S. and KÂ¨ogel, J. (2008).

Quick-Start TCP: From theory to practice. In Proc. 6th

Intern. Workshop on Protocols for FAST Long-Distance

Networks (PFLDnet), Manchester.

[14] Scharf, M. and Strotbek, H. (2008). Performance

evaluation of Quick-Start TCP with a Linux kernel

implementation. In Proceedings of the 7th international

IFIPTC6 networking conference on AdHoc and sensor

networks, wireless networks, next generation internet.

Springer-Verlag, 703-714.

[15] Cavendish, D., Kumazoe, K., Tsuru, M., Oie, Y. and

Gerla, M. (2009). CapStart: An adaptive tcp slow-start

for high speed networks. In Evolving Internet, 2009.

INTERNETâ€™09. First International Conference on.

IEEE, 15-20.

[16] Ha, S., Rhee, I. and Xu, L. (2008). CUBIC: A new

TCP-friendly high-speed TCP variant. ACM SIGOPS

Operating Systems Review. 42(5), 64-74.

[17] Ha, S. and Rhee, I. (2011). Taming the elephants: New

TCP slow-start. Computer Networks. 55(9), 2092-2110

