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ABSTRACT—TCP provides reliable data transmission by using congestion control mechanisms. Congestion control mechanism 

consists of slow-start, congestion avoidance, fast re-transmit and fast recovery modules. Slow-start and congestion avoidance 

modules are used to control the data transmission, whereas fast re-transmit and fast recovery modules are used to re-transmit the 

lost data. This paper reviews problems history and development of various slow-start modules present in the literature. It also 

provides a detailed literature review of state-of-art congestion control mechanisms being used by different operating systems by 

discussing their strength and weaknesses. Finally, literature summary is presented in the form to tables with detailed analysis as 

a source of inspiration towards future development of new congestion control mechanisms. 
 

Index Terms—TCP, Slow-Start Moduels, Congestion Control Mechanisms. 

1.  
INTRODUCTION 
Congestion is a problem that occurs on shared networks when 

multiple users contend for access to the same network 

resources (bandwidth, buffers or queues). However, 

congestion concerns controlling traffic entry into a network, 

thus avoiding congestive collapse by attempting to avoid 

over-subscription of any of the processing or link capabilities 

of the intermediate nodes and networks and taking resource 

reducing steps, such as reducing the rate of sending packets 

[1]. Congestion occurs when there is too much traffic in the 

network routers. If a router cannot transmit packets at a given 

instance, it stores packets in a queue and waits for the next 

chance to transmit. Queue has limited size, if queue data 

exceeds limit, packet will be discarded [1]. If congestion 

occurs in the network, then packet transfers are delayed and 

discarded. Due to this reason, some protocols or applications 

try to retransmit data. Users try to retransmit the data or 

request the same data again and again. In this case ratio of 

valid data is decreasing and at the end congestion collapse 

occurs Therefore, it needs to control this congestion to 

improve network quality of service [1]. Congestion control is 

also difficult, because the Internet is designed to be 

autonomous and it is a very huge network and still it is 

expanding. There is no centralized management to control 

each user behavior. Thus, it is difficult to determine how many 

users or applications are sharing the network exactly. It is also 

difficult to determine the source of the congestion exactly. It is 

not possible to determine the exact capacity of the networks 

and difficult to determine how much networks are congested 

exactly. Finally, it is not possible to determine why packets are 

lost. Many efforts have been done in the last twenty years to 

solve this network problem [1]. However, due to these all 

reason’s congestion control is still a critical issue for many 

researchers. 

Congestion control mechanism consists of slow-start and 

congestion avoidance, fast retransmit and fast recovery 

modules. Slow-start and congestion avoidance modules 

control the transmission, whereas fast retransmit and fast 

recovery moduels retransmit the lost data. The congestion 

avoidance module acts as the main part of the congestion 

control mechanism. Congestion avoidance module consists of 

response function of the mechanism, which is responsible for 

the reduction and growth of Congestion Window (cwnd) size, 

which in turn controls the transmission. For convenience, 

congestion avoidance module along with slow-start module is 

normally called as a congestion control mechanism. TCP has 

estimation, window control and data control components to 

control the transmission. Data control components determines 

which packet to transmit and window control determines how 

many packets to transmit. These decisions are made based on 

information provided by estimation component. This paper 

reviews a comprehensive study of TCP congestion control 

slow-start moduels present in TCP literature. In Section 2, 

problems history and behavior of TCP congestion control 

techniques being used during slow-start phase is discussed. In 

Section 3, literature analysis of slow-start moduels is 

discussed. 

2. TCP SLOW START MODULES 
Slow-start module increases the size of Congestion Window 

(cwnd) exponentially whereas congestion avoidance module 

increases  linearly. A number of slow-start modules are 

proposed in last few years. These slow-start modules sue 

different techniques to increase the size of cwnd, such that 

network congestion can be reduced. Slow-start modules are 

briefly explained with equations and cwnd graphs in next sub 

sections. 

2.1 Hoe’s Approach 

Hoe [2] proposes a method for the calculation of Slow Start 

Threshold (ssthresh) at an early stage of the connection. 

According to Hoe ssthresh is equal to the product of delay 

which is also known as Round Trip Time (RTT) and the 

estimated bandwidth as denoted in Eq. 1. The bandwidth 

estimation is performed by using the least squares estimation 

on three closely spaced Acknowledges (ACKs), similar to the 

concept of packet pair. RTT is obtained by measuring the 

round trip time of the first segment. Hoe’s approach avoids the 

source from premature transfer of the connection from 

slow-start phase to congestion avoidance phase. However, 

later on Dovrolis et al. [3] indicate that this estimation is not 

sufficient and need some sophisticated filtering to improve the 

bandwidth estimation. The problem in Hoe’s approach is due 

to the cross traffic, which may hinder in accurate estimation, 

results in a frequent over estimation of the bottleneck link 

bandwidth. Hoe’s approach fails when multiple losses occur 

because multiple flows get the same estimation of the link, 

results in overshooting the value of the cwnd from )( CN   

 value, where N is the number of competing flows and C is the 
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capacity of the link, thus a buffer size of half of BDP (BDP / 2) 

is required to prevent multiple losses for single connection. 

Figs. 1 and 2 show the cwnd behavior of single flows and four 

flows respectively. 

 andwidthEstimatedBDelayssthresh =  (1) (1) 

 

 
  

Fig. 1: Hoe’s approach, congestion window growth with single 

flow 

    

 
Fig. 2: Hoe’s approach, congestion window growth with four 

flows 

2.2 Vegas Approach 

Vegas slow-start module allows exponential growth of cwnd at 

alternating round trip times. It calculates the expected 

throughput, actual throughput and the difference between 

them. The problem in the Vegas mechanism is the premature 

termination of the slow-start phase [4]. Ha and Adviser-Rhee 

[5] experimentally analyze this issue and show that TCP 

Vegas prematurely terminates the slow-start phase as shown in 

Fig. 3, while the BDP of the network is high. The reason is that 

when the actual throughput falls below the expected 

throughput, it changes from slow-start phase to linear increase 

or decrease phase as denoted in Eq. 2.  

2.3 Standard Slow-Start 

The standard slow-start module of Jacobson [6] starts with a 

cwnd size of one segment and for each ACK received, it 

increases the cwnd size by one extra segment. This logic 

causes the cwnd to doubles its size at each RTT for the TCP 

session, causing an exponential increase of the number of 

injected segments into the network per RTT. The exponential 

growth of cwnd may cause large segment losses for certain 

network scenarios as shown in Fig. 4 

 
Fig. 3: Vegas approach, premature termination of slow-start 

phase 
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Fig. 4: Typical behavior of Standard slow-start with single flow 
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2.4 Limited Slow-Start 

By limiting the growth of cwnd at each RTT, Limited 

Slow-Start (LSS) can reduce the packet loss rate. Thus, it 

improves the performance of TCP. LSS introduces a new 

parameter named as maximum slow-start threshold 

(msx_ssthresh). During slow-start phase, if 

)_( ssthreshmaxcwnd  , cwnd is increased by one 

Maximum Segment Size (MSS) for every ACK. During LSS 

phase, if )<_( ssthreshcwndssthreshmax  , cwnd  is 

increased by )
1

( MSS
K
  per RTT and if 

)<( cwndssthresh , the connection ends the slow-start 

phase by entering into the congestion avoidance phase as  

shown in Eq. 3. Where K  is equal to 
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5 shows the behavior of LSS during slow-start phase.  
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Fig. 5: Typical behavior of Limited Slow-Start 
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2.5 Adaptive Limited Slow-Start 

Nakauchi and Kobayashi, [7] proposes Adaptive Limited 

Slow-Start (ALSS), where the source node configures 

ssthresh and max-ssthresh using Simple Internet Resource 

Notification Scheme (SIRENS). The behavior of SIRENS is 

illustrated in Fig. 6. By using SIRENS, the source node 

updates its information about current AvailableBandwidth and 

QueueSize at each hop. After this updating, the source node 

configures the ssthresh and max-ssthresh parameters using 

minimum available queue size and bandwidth respectively on 

the communication link as denoted in Eq. 4, where 0.5=1C  

and 0.75=2C  are ALSS constants. By this implementation, 

the source node can shift from slow-start phase to congestion 

avoidance phase without dropping any packets and can 

achieve maximum available link bandwidth in an efficient way 

as shown in Fig. 7.  

 
Fig. 6: SIRENS behavior [7] 

 

 
Fig. 7: Slow-start and congestion avoidance phases in ALSS 
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2.6 Adaptive Start 

Wang et al. [4] proposes an Adaptive Start (Astart) to improve 

the start-up performance in large bandwidth networks. At the 

beginning of the connection, Astart adaptively and repeatedly 

resets the ssthresh based on an Eligible Rate Estimation (ERE) 

[8] estimation mechanism being used by TCP Westwood [9]. 

Thus, it repeats the exponential and linear growth of the cwnd 

until a packet loss occurs. A start is slower than Standard 

slow-start, Eq. 5 shows the value of ssthresh and cwnd at each 

ACK. Fig.s 8 and 9 show the behavior of Astart with a single 

flow and with four flows respectively. In Fig. 9, each flow 

calculates the similar ERE value and after some time all flows 

overshot the link capacity. 

 

 
 

Fig. 8: Typical behavior of Adaptive Start with single flow 

 

 
Fig. 9: Typical behavior of Adaptive Start with four flows 
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2.7 Paced Start 

Hu and Steenkiste [10] proposes Paced Start which 

incorporates a bandwidth estimation mechanism into the 

Standard TCP start-up algorithm. Paced Start probes the 

available link bandwidth by measuring the gap between the 

data packets spacing and the ACK spacing. Standard 

slow-start ignores this information, while Paces Start uses it to 

estimate the cwnd for the network path. The main idea behind 

the Packed Start is to apply the available estimation algorithm 

to the packet sequence used by the Standard slow-start. 
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Sometimes this gap measurement is very difficult for Long 

Distance High Bandwidth (LDHB) networks.   

2.8 Quick Start 

Quick Start [11-14] is an experimental enhancement of the 

TCP slow-start module which uses explicit router feedback to 

determine the sending rate quickly. Quick Start requires 

modifications both in TCP algorithms and in routers. Scharf 

and Strotbek [14] first, show that Quick-Start can be added in 

real stack without causing any processing overhead. Secondly, 

Scharf and Strotbek [14] performed the experiments on 

webbased applications to measure the performance of 

Quick-Start. Finally, results show that Quick-Start can 

significantly speed up the data transmission. Thus, Quick Start 

may be useful for future Internet applications. 

2.9 Cap Start 

Cap Start [15] merge Standard slow-start (Reno slow-start) 

and Limited slow-start mechanisms to develop a new path 

estimation mechanism, which is a real-time estimation of 

current TCP path. Cap-Start is an adaptive slow-start module 

to achieve faster TCP communication in Long Distance High 

Bandwidth (LDHB) networks. After the estimation, it starts 

the communication with respect to available link bandwidth. 

As source interface capacity and network path capacity are 

two important entities in TCP communication. Cavendish et 

al. [15] evaluate the slow-start impact on different applications 

running on LDHB networks. Cavendish et al. [15] conclude 

that for LDHB networks, faster network interface cards may 

not achieve better network performance with Standard slow 

start (Reno slow-start) protocol. If ifC  represents TCP source 

interface capacity, iC  represents router i  outgoing interface 

capacity, bnC  represents bottleneck capacity, capacity 

expansion path scenario satisfies ),<( iiif CC   and 

capacity reduction path scenario satisfies ),( iiif CC   , 

then size of cwnd is given as in Eq. 6.  
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2.10 Hybrid Start (HyStart) 

TCP CUBIC [16] uses HyStart [17] as its default slow-start 

module. HyStart uses a Safe exit point to switch the connection 

from slow-start phase to congestion avoidance phase. As the 

capacity of a network can be defined by the sum of unused link 

bandwidth on the forward path and the size of buffer at 

bottleneck router, the safe exit point must be less than C, 

whose value is given in Eq. 7, where B is the unused link 

bandwidth, minD  represents the minimum forward path one 

way delay and S represents the available buffer size. Packet 

loss will occur if the size of cwnd is greater than C. The cwnd 

curve behavior of HyStart during slow-start phase is shown in 

Fig. 10. Figure illustrates the exponential growth of cwnd in 

slow-start phase.  

 

 
   
Fig. 10: Congestion window curve of HyStart 

)(= SDBC min     (7) 

occurwilllossPacketCcwndif ),>(  

There are two types of bandwidth estimation techniques: 

packet-pair and packet-train. For bandwidth estimation, 

HyStart uses a concept similar to packet-train. Suppose a 

source transmits N back-to-back packets of size L to the 

destination. For (N > 2), these back-to-back packets are called 

a packet-train. The length of this packet-train is denoted by 

)(N , which is equal to 
k

Nk

k


1=

1=
 as described in Eq. 8. 

Where N is the number of packets in train, k  is the inter 

interval time between packets k  and 1k  as shown in Fig. 

11. By using the packet-train length, a destination can measure 

the bandwidth )(Nb  of the link as expressed in Eq. 9 and 10.  

   

 
 

Fig. 11: Packet train concept 
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By using packet-train concept and an approach of [17], unused 

link bandwidth on the link can be calculated. Based on this 

approach, if B  represents the unused link bandwidth for the 

forward path and minD  represents the minimum forward 

one way delay (RTT / 2), then the Bandwidth Delay Product 

(BDP) of the link path can be denoted as )( minDB , which 

is described in Eq. 11.  

minDNbminDBBDP  )(==  (11) 
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Solving Eq. 9 and 11, )( minDB  is updated and is shown 

in Eq. 12.  

minD
N

LN
minDBBDP 






)(

1)(
==

 (12) 

Based on [17], if )(N  is equal to Dmin , then 

)( DminB  will equal to LN 1)(  as described in Eq. 

13.  

LNminDBBDP  1)(==  (13) 

 Since 
)(

1)(
=)(

N

LN
Nb



 , then LN 1)(  represents the 

size of cwnd , means when )(N  is equal to minD , the 

cwnd  becomes equal to )( minDB  as described in Eq. 

14.  

cwndminDBBDP ==     (14) 

By dividing minD  on both sides, bandwidth B  can be 

calculated as described in Eq. 15.  

cwnd

minD
B =    (15) 

By using train of acknowledgements, )(N  is estimated, 

which is equal to the sum of inter arrival times of packets in 

train as shown in Fig. 11. )(N  represents the time period 

between the receipt of first and last ACK in an 

acknowledgement train. minD  is calculated by dividing the 

minimum observed RTT by 2 as defined in Eq. 16  

2
=

minRTT
minD    (16) 

2.11 Early Slow-Start Exit 

Giordano et al. (2005) [18] proposes Early Slow-Start Exit 

(ESSE) to improve the TCP startup performance by setting the 

ssthresh according to a pipe size estimation mechanism based 

on the observation of few acknowledgement’s arrival times. 

ESSE module is easy to implement and preserves the 

compatibility with the Standard TCP, since it requires changes 

to the source side only. ESSE allows to speed-up TCP 

connections and reduces the packet loss rate. Better 

performance of TCP can be observed for any of the considered 

estimators, which indicates that the algorithm is robust against 

estimation errors. ESSE modified protocols guarantee fair 

utilization of bandwidth among homogeneous and 

heterogeneous (Newreno) connections sharing a common link. 

This technique is quite successful in reducing the packet loss 

rate at the bottleneck and in decreasing the completion time 

(indeed, the most interesting parameters for end-users) of short 

lived connections. An estimated value of ssthresh should be 

close to BDP and can be further expressed as the ratio between 

the delay and the spacing of packets at bottleneck. The optimal 

delay is between the round trip delay and the maximum 

expected delay. The upper and lower bounds of the interval 

can be estimated at real time by taking the minimum and 

maximum round trip times observed by the initial few packets.  

The optimal packet spacing is related to the inter arrival time 

of acknowledgements of two packets sent in close succession. 

If kRTT  represents the 
thk  packet RTT, kt  represents the 

inter arrival time between 
thk 1  and 

thk  packet, then Table 

1 represents the maximum cases of bandwidth estimators. The 

pipe-size is estimated first by using one of the estimation from 

Table 1 over a predefined number of acknowledgements, then 
Table 1: Bandwidth estimations in ESSE 

 
Name  Estimator  

MinMin  

k

k

tmin

minRTT


  

MaxMin  

k

k

tmin

maxRTT


  

MinMed  

kk

k

minRTTmaxRTT

minRTT


  

MaxMed  

kk

k

minRTTmaxRTT

maxRTT


  

 

the ssthresh is selected accordingly.  

SpacingPacket

Delay
SizePacket

BandwidthDelay
SizePipe







=

=  

2.12 Gallop-Vegas 

Ho et al. (2006) [19] proposes Gallop-Vegas to enhance the 

throughput of TCP Vegas [20]. It does not increase cwnd  in 

first RTT, however, after second RTT, it increases the cwnd  

with a stable growth rate between exponential and linear 

growth as shown in Fig. 12.  

   

 
Fig. 12: Stable growth rate of congestion window in Gallop Vegas 

 

3.  LITERATURE ANALYSIS AND SUMMARY OF 
SLOW-START MODULES 
This literature reviewed a comparative study of slow-start 

modules of TCP congestion control mechanism. It is found 

that, slow-start modules uses two variables: Congestion 

Window (cwnd) and Slow-Start Threshold (ssthresh) to 

control the transmission during show start phase. However, the 

values of these two variables are depending on the available 

link bandwidth. Thus, for link bandwidth estimations, 

different techniques are used by different slow-start modules. 

The aim of all slow-start modules is to switch the connection 

from slow-start phase to congestion avoidance phase without 

dropping much packets. For this purpose some of slow-start 

modules are also use a conditional variable. 
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Hoe proposes a method for the calculation of ssthresh at an 

early stage of the connection. Based on Hoe’s approach, 

ssthresh is equal to the product of delay RTT and the estimated 

bandwidth. Hoe’s approach fails when multiple losses occur 

because multiple flows get the same estimation of the link, 

results in overshooting of the value of the cwnd. However, 

later on Dovrolis et al. [3] indicate that this estimation is not 

sufficient and need some sophisticated filtering to improve it. 

Hu and Steenkiste (2003) [10] proposes Paced Start which 

incorporates a bandwidth estimation mechanism into the 

Standard TCP start-up algorithm. Paced Start probes the 

available bandwidth by measuring the gap between the data 

packets spacing and the ACK spacing. Standard slow-start 

ignores this information, while Paces Start uses it to estimate 

the cwnd for the network path. The main idea behind the 

Packed Start is to apply the available estimation algorithm to 

the packet sequence used by the standard slow-start. 

Sometimes this gap measurement is very difficult for high 

bandwidth, long distance networks. 

Vegas slow-start mechanism allows exponential growth of 

cwnd at alternating round trip times. It calculates the expected 

throughput and actual throughput and the difference between 

these throughputs. The problem in the Vegas mechanism is the 

premature termination of the slow-start phase [4]. Ha and 

Adviser-Rhee [5] experimentally analyze this issue and show 

that TCP Vegas prematurely terminates the slow-start phase, 

while the Bandwidth Delay Product (BDP) of the network is 

high. Wang et al. [4] proposes an Adaptive Start (Astart) to 

improve the start-up performance in large bandwidth delay 

networks. At the beginning of the connection, Astart 

adaptively and repeatedly resets the ssthresh based on an 

Eligible Rate Estimation (ERE) [8] estimation mechanism 

being used by TCP Westwood. Thus it repeats the exponential 

and linear growth of the cwnd until a packet loss occurs. 

By limiting the growth of cwnd at each RTT, Limited 

Slow-Start (LSS) can decrease the packet loss rate by 

improving the performance of TCP. LSS introduces a new 

parameter named as maximum slow-start threshold 

)_( ssthreshmax . During slow-start phase, if 

)_( ssthreshmaxcwnd  , cwnd  is increased by one 

Maximum Segment Size (MSS) for every ACK. During LSS 

phase, if )<_( ssthreshcwndssthreshmax  , cwnd  is 

increased by 
)

1
( MSS
K


 per RTT and if )<( cwndssthresh , 

the connection ends the slow-start phase by entering into the 

congestion avoidance phase. Giordano et al. [18] proposes 

Early Slow-Start Exit (ESSE) to improve the TCP start up 

performance by setting the ssthresh according to a pipe size 

estimation mechanism based on the observation of few 

acknowledgement’s arrival times. ESSE allows to speed-up 

TCP connections and reduces the packet loss rate under 

several working conditions and load levels. Better 

performance of TCP can be observed for any of the considered 

estimators, which indicates that the algorithm is robust against 

estimation errors. ESSE modified protocols guarantee fair 

utilization of available link bandwidth among homogeneous 

and heterogeneous (Newreno) connections sharing a common 

link. This technique is quite successful in reducing the packet 

loss rate at the bottleneck and in decreasing the completion 

time (indeed, the most interesting parameters for end-users) of 

short lived connections. 

An estimated value of ssthresh should be close to bandwidth 

delay product and can be further expressed as the ratio 

between the delay and the spacing of packets at bottleneck. 

The optimal delay is between the round trip delay and the 

maximum expected delay. The upper and lower bounds of the 

interval can be estimated at real time by taking the minimum 

and maximum round trip times observed by the initial few 

packets. The optimal packet spacing is related to the inter 

arrival time of acknowledgements of two packets sent in close 

succession. If )( kRTT  represents the 
thk  packet RTT, 

)( kt  represents the inter arrival time between 
thk 1  and 

thk  packet, then Table 1 represents the maximum cases of 

bandwidth estimators. The pipe-size is estimated first then the 

ssthresh is selected accordingly. 

Ho et al [19] proposes Gallop-Vegas to enhance the 

throughput of TCP Vegas. It does not increase cwnd in first 

RTT, after second RTT, it increases the cwnd with a stable 

growth rate between exponential and linear growth.  [7] 

proposes Adaptive Limited Slow-Start (ALSS), where the 

source node configures ssthresh and max-ssthresh using 

SIRENS. By using Simple Internet Resource Notification 

Scheme (SIRENS), the source node updates its information 

about current AvailableBandwidth and QueueSize at each hop. 

After this updating, the source node configures the ssthresh 

and max-ssthresh parameters using minimum available queue 

size and bandwidth respectively on the communication link. 

By this implementation, the source node can shift from 

slow-start phase to congestion avoidance phase without 

dropping any packets and can achieve maximum available link 

bandwidth. 

Quick Start is an experimental enhancement of the TCP 

slow-start mechanism which uses explicit router feedback to 

determine the sending rate quickly. Quick Start requires 

modifications both in TCP algorithms and in routers. Scharf 

and Strotbek [14] first, show that Quick-Start can be added in 

real stack without causing any processing overhead. Secondly, 

Scharf and Strotbek [14] performed the experiments on web 

based applications to measure the performance of Quick-Start. 

Finally, results show that Quick-Start can significantly speed 

up the data transmission. Thus Quick Start can be useful for 

future Internet applications. 

Cap Start [15] merge Standared TCP slow-start (Reno 

slow-start) and Limited slow-start mechanisms to develop a 

new path estimation mechanism, which is a real-time 

estimation of current TCP path. Cap-Start is an adaptive 

slow-start mechanism to achieve faster TCP communication in 

high bandwidth long distance networks. After the estimation, 

it starts the communication with respect to available link 

bandwidth. As source interface capacity and network path 

capacity are two important entities in TCP communication, 

Cavendish et al. [15] evaluate the slow-start impact on 

different applications running on Long Distance High 

Bandwidth (LDHB) networks. Cavendish et al. [15] conclude 

that for LDHB networks, faster network interface cards may 

not achieve better network performance with Standard 
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slow-start (Reno slow-start) protocol. HyStart [17] uses a safe 

exit point for the termination of slow-start phase. As the 

capacity of a network can be defined by the sum of unused 

available link bandwidth on the forward path and the size of 

buffer at bottleneck router, the Safe exit point must be less than 

a run time defined variable’s value. Different techniques being 

used by slow-start modules are summarized in Table 2. 
Table 2: Literature analysis of slow-start modules 

Slow-start modules Techniques 

Hoe’s Approach  It uses a technique similar to Packet 

Pair for the estimation of the unused 

link bandwidth.  

Vegas Approach  It uses actual throughput, expected 

throughput and their difference to 

make a decision to terminate the 

slow-start phase.  

Standard Slow-Start  It uses a technique of exponential 

growth of congestion window (cwnd) 

during slow-start phase.  

Limited Slow-Start  It uses maximum slow-start threshold 

(max_ssthresh) for the growth of 

congestion window (cwnd).  

Adaptive-Limited                                              

Slow-Start  

It uses Simple Internet Resource 

Notification Scheme (SIRENS) to 

estimated the unused link bandwidth 

and queue size.  

Adaptive Start  It uses Eligible Rate Estimation 

(ERE) of TCP Westwood to estimate 

the unused link bandwidth.  

Paced Start  It uses packet spacing and ACK 

spacing techniques to estimated the 

unused available bandwidth.  

Quick Start  It uses the Explicit Router Feedback 

(ERF) technique to determine the 

sending rate.  

Cap Start  It uses both techniques of Standard 

Slow-Start and Limited Slow-Start to 

develop a new path estimation 

mechanism.  

Hybrid Start  It uses a conditional variable to switch 

the connection from slow-start phase 

to congestion avoidance phase.  

Early Slow-Start Exit  It uses packet spacing based on ACK 

arrival time to estimate the unused 

link bandwidth.  

Gallop Vegas  It used linear, stable and exponential 

growth of congestion window (cwnd). 

4.  FINDINGS OF LITERATURE REVIEW 
At the beginning of transmission, slow-start module increases 

the size of cwnd rapidly because the size of unused link 

bandwidth is unknown. Slow-start modules increase cwnd 

exponentially, linearly and in stable way. During exponential 

growth, size of cwnd increases one packet in each 

acknowledgment (ACK) which doubles the size of cwnd at the 

end of each Round Trip Time (RTT). In linear growth, size of 

cwnd increases linearly, which increases one packet in each 

RTT instead of at each ACK. In stable growth, size of cwnd 

increases between exponential and linear way. However, 

exponential growth of cwnd increases the size of cwnd very 

fast as compared to linear or stable growth. Thus, exponential 

growth of cwnd causes much packet losses during slow-start 

phase and many state-of-the-art operating systems suffer this 

problem. Once the size of cwnd increase to an appropriate 

value, connections leaves the slow-start phase and enters into 

the congestion avoidance phase. Slow-start modules use 

different techniques to switch the connection from slow-start 

phase to congestion avoidance phase. Some slow-start 

modules use ssthresh variable and some modules use a 

condition, such as safe exit point, early exit point or cut-off 

point to switch the connection from slow-start phase to 

congestion avoidance phase without losing much packets in 

slow-start phase. If the size of cwnd is equal to or greater than 

ssthresh, connection switches automatically from slow-start 

phase to congestion avoidance phase. Different congestion 

control modules use different techniques to calculate the 

ssthresh and cut-off or safe exit points. Few slow-start modules 

also calculate the expected and actual throughput and the 

difference between these two throughputs to control the 

growth of cwnd. In short, the purpose of slow-start module is 

to start the transmission and to increase the size of cwnd to an 

appropriate size, so that, maximum available link bandwidth 

can be achieved for transmission by minimizing the packet 

loss rate during slow-start phase.  

 

5.  SUMMARY 
In this paper, an extensive literature review is presented that 

mainly includes slow-start. However, research is being done to 

utilize the maximum available link bandwidth and to avoid 

from the congestion. Practically all Internet applications rely 

on the TCP and to deliver data reliably across the network. The 

most important element of TCP is congestion control that 

defines its performance characteristics. Literature highlighted 

the fact that research focus has changed with the development 

of the Internet, from the basic problem of eliminating the 

congestion collapse phenomenon to problem of using 

available network resources efficiently in different type of 

network environments.  
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